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Common structure of several completely integrable 
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Received 27 October 1987, in final form 15 February 1988 

Abstract. We consider several non-linear equations which are known to be completely 
integrable by the method of inverse scattering transform, ranging from sine-Cordon and 
the Dodd-Bullough equation to the axisymmetric, stationary, Einstein-Maxwell equations. 

Such equations are known to be invariant under a fundamental Lie group of symmetry 
(G), such as SL(2) or SL(3) in the simpler cases. Our treatment starts with the reformulation 
of the given equations as a system involving the scalar invariants of the Lie group (G) 
only; this scalar formulation is not only (G) invariant, but also manifestly invariant under 
the continuous group associated with the emergence of a spectral parameter, and is thus 
expected to be more fundamental and simpler. In all the cases that we have considered, 
including the Einstein-Maxwell system, vector pseudopotentials of dimension not higher 
than three have been derived; Backlund transformations have been found, which generate 
multisolitons starting from the vacuum, and have the general (reciprocal) form: 

X’= 1/x 
where X is a component of one of the vector (or tensor) pseudopotentials. 

We also mention the result that Kinnersley’s formulation of the Ernst (vacuum) 
equation is formally equivalent to the fluid dynamical problem of unidimensional ideal 
gas flow; the Dodd-Bullough equation is equivalent to another particular case of gas motion. 

1. Introduction 

The basic properties of the evolution equations which are integrable by the method 
of inverse scattering transform (IST) have been analysed by many authors and are well 
known (for reviews, see, e.g., [l-51). Such equations are considered to be ‘completely 
integrable’ and are also characterised by an infinite-dimensional Lie symmetry group, 
which usually arises from the combination of a finite-dimensional Lie group (G), such 
as SL( N ) ,  and a discrete transformation: the Backlund transformation. 

We show in the present paper that the analysis of many integrable systems in two 
independent variables can be done in a clarifying and rather unified way by first 
forming the invariants of the Lie group (G) and then selecting them as the basic 
unknown functions, SZ. 

The corresponding pseudopotential is, in most cases, a three-component vector X ,  
given by a set of three linear second-order PDE, of the general form: 

0305-4470/88/112491+41$02.50 @ 1988 IOP Publishing Ltd 249 1 



2492 B Gaffet 

where the 3 x 3 matrix M has coefficients which are a function of R;  the subscripts 
denote differentiation with respect to the two independent variables a, p. The Lie 
group (G) may be the full SL(3) group of the (unimodular) linear transformations of 
X ,  or-as in the sine-Gordon case-a subgroup of it. This formulation (1.1) is suscep- 
tible of generalisation (§  2.1) to accommodate Lie groups (G)  of order higher than 
SL(3). 

By a process of elimination, overdetermined pairs of ordinary differential equations 
(ODE) can be derived and  provide an effective way of computing the pseudopotentials 
associated with any given solution R,  since the equations are linear. As the equations 
are uncoupled, they can be written down for each component X of X separately. 

The Backlund transformation ( BT) is yet another symmetry of the system, one that 
does not leave R invariant; its transformation formulae can be derived in closed form, 
in terms of R and its pseudopotentials X: 

R’ = R’(R; X )  

x: = x:(n; X ) .  

In  all cases that have been considered here, the E T  turns out to be a reciprocal 
transformation: applying it twice gives back the original solution (R;  X),  provided that 
the pseudopotential X‘ is not independently recalculated before applying the transforma- 
tion a second time. Thus, e.g., the BT in the axisymmetric Einstein-Maxwell case is 
just the reciprocal transformation which exchanges the time and azimuthal coordinates 
t, cp ( 9  6 ) ;  yet, in combination with the Lie group (G), the BT does generate the infinite 
Lie group of symmetry characteristic of completely integrable systems. It also generates 
the n-soliton formula, starting from the vacuum. 

The formulation (1.1) has already been shown to be appropriate to the analysis of 
the Dodd-Bullough equation [ 6 ] ;  the corresponding Lie group (G) is SL(3) and the 
Backlund transformation is simply 

X ’  = 1/x.  

In § 2 we present a few general results concerning the properties of systems of the 
form (1.1) and  briefly recall the essentials of the analysis of the Dodd-Bullough (DB) 
case. In  § 3 the sine-Gordon equation is seen to be amenable to a very closely similar 
treatment and the classical Backlund transformation for sine-Gordon is shown to be 
given by the sameformula: X ‘ =  1/X. An interesting peculiarity is that the formulation 
(1.1) still retains the SL(3) symmetry, as in the DB case, but the applicability of the 
BT requires that an additional non-linear constraint on X be satisfied, and that is 
compatible with an SL(2) subgroup only. 

In § 4 we consider the axisymmetric vacuum Einstein equations, which are represen- 
ted by the Ernst equations [7]; their analysis closely parallels that of sine-Gordon, 
which indeed constitutes the limiting form of the Ernst equations far away from the 
symmetry axis. In § 5 we introduce a generalised sine-Gordon equation with genuine 
SL(3) symmetry, which may be called sine-Gordon-Maxwell, as it similarly constitutes 
the limiting form of the Einstein-Maxwell equations away from the axis and, in § 6, 
we generalise our treatment to include the axisymmetric Einstein-Maxwell system. 

In all the above-mentioned cases, a three-dimensional vector pseudopotential X 
turns out to be sufficient and  can be effectively calculated by solving linear ODE which 
are of the third order only, instead of the cumbersome eighth order that might have 
been expected from the dimension of the usual Einstein-Maxwell linear representation 
[SI ( 5 s  5 and 6). This simplification results from the separability of the equations 
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defining the pseudopotentials; the usual eight-dimensional representation separates 
into a pair of (complex conjugate) fundamental representations of dimension 3. 

2. General formalism, with application to the Dodd-Bullough equation 

2.1. General formulation, with N-dimensional pseudopotentials 

The general principle underlying the present method may be stated as follows: first, 
we look for a base ( E , ,  . . . , E,) of the simplest available representation of the Lie 
group (G) that can be obtained explicitly in terms of the invariant unknown function 
.12 and of the associated (pseud0)potentials; in the Einstein-Maxwell case, for instance 
(see 0 6), that is the eight-dimensional representation in terms of the four non-linear 
Ernst potentials proposed by Kinnersley [8]. Then we expand the first-order derivatives 
of Ei along that base, in the form: 

(2 . la )  

(2.lb) 

where M ,  fi are two N x N matrices whose coefficients are all (G) invariant and are 
expressible in terms of the invariant unknown function(s) 0; cy, /3 are the two indepen- 
dent variables. Each equation, (2.1 a )  and (2.1 b), is equivalent to an Nth-order ordinary 
differential equation for any of the base vectors, Ei say, since all ( N  - 1) other vectors 
may easily be eliminated and, since the order is greater than unity, each E, plays the 
role of a pseudopotential, according to the definition given by Wdhlquist and Estabrook 

The system (2.1) being an overdetermined system, there are conditions for the 
[91. 

integrability of ( E ) ,  which arise from 

~,(E,)=M,(E)+MG;I(E)  
~,(E,)=GJE)SR;IIM(E) 

where ( E )  denotes the column: ( E , ,  . . . , E N ) .  Thus the conditions are 

Go - Mp = [ M ,  fi]. (2.2) 

2.2. Three-dimensional pseudopotentials 

It is one of the results of the present study that three-dimensional representations are 
in fact explicitly obtainable even in such comparatively complex cases as the axisym- 
metric Einstein-Maxwell equations, whose symmetry group (G) is of order no higher 
than SL(3). In such a case we rewrite E ,  = X and choose X, X,, X p  for the base vectors 
[lo], so that the formulation (2.1) reduces to a set of three second-order PDE for the 
pesudopotential X: 

( 2 . 3 ~ )  

(2.3b) 

( 2 . 3 ~ )  

X,,  = box, + BX, + b, X 

xp, = cx, + c,xp + c,x 
Xap = aoX, + a,Xp + DX. 
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The integrability conditions are derived from ap(X,,) = a , (Xmp) ,  a,(Xpp) = aP(Xop) ,  

a,, -bop  = BC - D - aOul ( 2 . 4 ~ )  

a , , -BP =B(c , -a , )+a, (b , -a , )+b,  (2.4b) 

D, - b,p = Bc, + D( bo - U , )  - a,bl ( 2 . 4 ~ )  

alp - C O ,  = B C  - D - U O U ~  ( 2 . 5 ~ )  

aop - C, = C ( bo - a ,  ) + a,( c, - a,) + c ,  (2.5b) 

Dp - C , ,  = C b , + D ( c o - a ~ ) - a , c , .  ( 2 . 5 ~ )  

We remark that the above equations (2.4a) and ( 2 . 5 ~ )  ensure existence of a quantity 

and are the following: 

w, defined by 

w, = a, + bo 

wp = a,+c,. 

In agreement with the general conclusions of the preceding section, X satisfies a 

X,,, = b,X,,+(Ba,+bo,+b,)X,+(Bu+Ba,)Xp+(BD+b,,)X (2.7) 

where the expression ( 2 . 3 ~ )  in terms of a derivatives of X should be substituted for X,. 

pair of third-order ODE: 

2.3. Reformulation as a pair of jrst-order equations for  two dual vectors X ,  U 

First, introducing the notation fi for the triple product of the three-dimensional vectors 
x, x,, xp: 

~ ~ ( ( x , x , , x p ) ~ x x ( ( x ,  A x , )  

we note the following identification of the matrix coefficients in terms of triple products: 

Bfi = ( X ,  x,, Xu,) 

Cfi = - (X ,  xp, Xp,) 

Dfi= (X,,  4 3 ,  Xmp) 

b l f i = ( X , , ~ , , X u u )  

c ,n  = (X,,  xp, X p p )  

bofi = - (X ,  xp, X m u )  

COR = ( X ,  x, 9 xp, 1 
(2.8) 

a,= a,(ln fi) - co 

Thus, the quantity w defined above (see equation (2.6)) is just 

a ,  = a,(ln fi) -bo .  

w = l n R .  

Let us now introduce a new vector U, the three-dimensional (Euclidean) cross- 
product: 

It is easily seen that U satisfies the following system: 

fiu, = - D x  A x, + b,X A X ,  

R U, = -c,X A X ,  + D X  A X p  
U . X = l .  

(2.10) 
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This may be solved as a linear system for X ,  and X,  and yields a dual system of the 
same form: 

(2.11) 

where, by definition of 6, 
R f i = ( b , c , - D ' ) .  (2.12) 

2.4. A n  application: the Dodd-  Bullough equation 

That is the case where equations (2.3) for X assume the form: 

X,, = w a x ,  + BX, 

x,, = wpx, + cx, (2.13) 
xu, = ax 

where we have used the lower-case symbol w for the logarithm, I n n .  Then the 
integrability conditions (2.4) and (2.5) are 

~ , p  + BC - R = 0 

Bp + B o ,  = O  
and 

w,p + BC -R = 0 

c, + c w ,  = 0. 

The equations for B and C are obviously integrable in the form: B = F ( a ) / R ,  C = 
G(P)/R, and one obtains a second-order PDE for the single unknown R (we will, for 
clarity, retain the symbol a for denoting differentiation of relatively complex 
expressions; i.e. we will write de,(. . .) rather than (. . .),, when (. . .) involves more 
than just one symbol): 

d,,(ln R) = R - F ( a ) G ( p ) / R 2 .  

As observed in [6], this is obviously reducible, by a conformal transformation, to the 
form 

(2.14) d,,(ln a) = a- I/R* 
which, as announced, is the Dodd-Bullough equation [ 111 .  

elegant and symmetrical form: 
The associated first-order system for the two dual vectors U, X has a particularly 

u , = r x A X ,  

U, = -rx AX, 

u . x = 1  
(2.15) 

or, equivalently, 

X , = - r - ' u h  U, 

x,=r-" U, 
u * x = 1  

(2.16) 
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where r is a constant. It was first noted in [ 121 that Euler equations of one-dimensional 
fluid flow with arbitrary equation of state are of the general form ( 2 . 1 5 )  and (2.16),  
with a factor determined by the equation of state and generally non-constant. 
Complete integrability obtains for the particular equation of state associated with a 
constant I' (see [ 1 3 ] ) .  

That is not the sole case of complete integrability, however. As we shall see, the 
sine-Gordon equation is also of this type, with a r equal to 

rSG = i / x 2 .  

The Ernst equations, of which the Kerr metric associated with a rotating black hole 
is a particular solution [ 7 ] ,  are of the same type too, as shown in Q 4, with 

r E r n s t  = P I X 2  ( P  = a  - P I .  

2.5. Analysis of the Dodd - Bullough equation: the pseudopotential and Backlund transfor- 
mation 

The Dodd-Bullough equation was originally shown by Mikhailov [ 141 to be integrable 
by the inverse scattering transform. Gaff et [ 6 ]  obtained the Backlund transformation 
(which had been thought to be absent in the DB case; see [ 5 ] ) .  We briefly summarise 
here the main points of this analysis. 

The DB equation (2.14) is easily seen to be the integrability condition for the 
existence of a pseudopotential X ,  defined as 

RX, ,  = f l u x  + A3Xp ( 2 . 1 7 ~ )  

RX,,  = R p X + X , / A 3  (2.17 b )  

XQP = R X  ( 2 . 1 7 ~ )  

where the spectral parameter A has been introduced so as to restore conformal 
invariance. We may eliminate R from the last equation and there results a pair of 
third-order cubic homogeneous PDE for X (see [ 6 ] ,  equation (4 .9 ) ) :  

XaXaap - Xup ( X,, + X / X ) + A XXp = 0 

XpX,pp - X,p (Xpp + X ' , / X )  + X X , / A  = 0. 
( 2 . 1 8 )  

As the equations are homogeneous, it is natural to rewrite them in terms of x = In X ;  
the resulting equations turn out to have a definite parity in x and A and are thus 
invariant under the transformation: 

X ' =  1/x. (2.19) 

The corresponding transformation formula for R is, using R = X m p / X ,  

R + R ' =  2xuxp/x2 (2.20) 

which, taking account of (2.17c), is in the form of a truncated PainlevC expansion. 
Equations (2.19) and (2.20) constitute the Backlund transformation for the DB equation; 
it does include a spectral parameter, which enters equations (2.17) defining the 
pseudopotential X .  The transformation looks reciprocal at first sight, but it is not if 
the pseudopotential X is recalculated at each step, using (2.17); in other words, the 
combination of the BT with the SL(3) group of linear transformations of X is an infinite 
group. 
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The above BT was shown in [ 6 ]  to yield the soliton solution when applied to the 
vacuum, and the two-interacting soliton formula when applied to an isolated soliton, 
in agreement with the usual pattern of multisoliton construction from BT. 

It is worth noting that, since the DB equation allows a fluid dynamical interpretation 
as pointed out in the preceding section, the BT must have a hydrodynamical analogue: 
i.e. the symmetry discovered around 1954 by Martin and Ludford [15] and 
Stanyukovitch [ 1 6 ] ,  which transforms the integrated mass M = p dx into its inverse: 
M’= 1/M, without affecting the time coordinate. An interpretation in terms of a 
space-dependent rescaling of the fundamental units was proposed in [ 171. 

3. The sine-Gordon equation 

The occurrence of 3~ vector pseudopotentials in the sine-Gordon case is related to the 
fact that sine-Gordon is equivalent to the bidimensional O ( 3 )  non-linear m model 
[ 10, 181. 

3.1. A derivation 

We start with the general form (2.15),  choosing a factor r of the form: 

r = -i/x2 

= - l / ( x ; + x ; + x : ) .  (3 .1 )  
It turns out to be convenient to rewrite the equations in terms of the unit vector 
X’= x/Jx’: 

U, = -X’ A x& 
U, = x’ A xb 
XI2= 1. 

(3 .2)  

We forsake the prime and rewrite X and X‘ from now on; solving for Xu, X, in the 
above equations produces the dual system: 

X,=XA U, ( 3 . 3 ~ )  

(3 .3b )  

All four vectors Xu, X,, U,, U, thus belong to the two-dimensional plane orthogonal 
to X; furthermore, {X, Xu, U,} and {X, X,, U,} constitute two orthogonal trihedrals, 
rotated from one another by a certain angle p. That angle will be identified with the 
sine-Gordon field when the equation is written in its standard form, (P,, = 
constant x sin p. 

The following geometrical relations hold: 

U, * x, = U, * xu = -(X, x,, X,) = -n 

U’, = x’, uz, = xz, 
Xu A X, = - U, A U, = OX 

x,Aup=-xphu,=Hx 
and define two scalars, Cl and H. 
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The integrability conditions associated with (3.2) and (3.3) are respectively 

X,p = - HX 

U,,=-U,A U , = R X .  

x‘, = F (  a )  

As a result we obtain the pair of first integrals: 

X i  = G(P) .  

(3.4) 

Since the original system is conformally invariant, we may, without loss of generality 
[lo], choose F ( a )  = A 2 ,  G(P)  = l / A 2 ,  i.e. 

where A plays the role of a spectral parameter. Finally one obtains a system of 
second-order PDE for X, of the general form (2.3): 

X,, = W ,  ( X ,  - A2Xp/ H )  - A2X 

X,, = wp (Xp - X , / A 2 H )  - X / A 2  (3.6) 

X,p = - HX 

where w = In R, H and R are constrained by H 2  + R2 = 1 and can be identified with 

H = COS cp R = sin cp. (3.7) 

Applying the general results of 0 2 (see (2.4) and (2.5)), we find the equation satisfied 
by H and R: 

wap + w , w p / H 2 +  H = 0 (3.8) 

or, in terms of cp only, 

pap = -sin cp 

which is the sine-Gordon equation, as desired. 

3.2. The Backlund transformation 

We may rewrite the system (3.6) in terms of cp: 

sin cp(X,,+A2X)=cp,(cos cpX,-A2Xp) 

sin cp(Xpp +X/A2) = cpp(cos cpXp -X,/A2) 

xu, +cos cpx = 0. 

(3.9) 

( 3 . 1 0 ~ )  

(3.10b) 

(3 .10~)  

In the same way as in the DB case, cos cp = -X,,/X may be eliminated and the result 
of the elimination is a pair of quartic homogeneous equations for X (we set A = 1 for 
conciseness in the following equations (3.1 1) and (3.12)): 

XX,,,(X,X,, +xxp)+xx,,(x2-xz,,)= (x2+x~)x~p+xxuxpx,p -x4 
(3.11) 
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plus another symmetrical equation obtained by interchanging the roles of cy and P. 
Transforming to variable x = In X, the result is not of a given parity, unlike the DB 

case. However, there is still the possibility that the even and odd parts simultaneously 
vanish, and can still be compatible with the system (3.10). This entails introducing 
the additional constraint: 

(3.12) 

which can also be, returning to the original variable X = e" and restoring the spectral 
parameter A :  

(X:/A2-2cos cpXUXp+A2X~)+X2sin2  cp = O .  (3.13) 

The above constraint turns out to be indeed compatible with the system (3.10). One 
way to show it is to start from the two equations (3.13) and (3 .10~)  and note that the 
remaining equations (3. loa, b )  immediately arise as consequences. 

With the understanding that the pseudopotential is now restricted by (3.13) in 
addition to (3.10), the following Backlund transformation holds: 

XI= 1/x (3.14) 

XZ,@ = (XZ, + l)(x; + 1 )  

as in the DB case! The transformation formula for H is, since H = -X,,/X, 

H + H ' =  -2XuXp/X2. (3.15) 

Again the BT appears to be reciprocal and the spectral parameter is hidden in the 
definition of the pseudopotential X. 

The PainlevC expansion appears to be simpler in terms of H, which satisfies the 
equation: 

(3.16) Hap + HHuHp/(l - H2) = ( 1  - H2). 

Its expansion is, retaining only the first few terms, 

2 F  F 2Fup 
H = -2 + - + u o + .  * ,  

F 2  F 
(3.17) 

where the functions F and uo are both arbitrary. The proposed BT may be rewritten 
in the form: 

HI= -2X,Xp/X2+2Xup/X+ H (3.18) 

since H = -Xup/X, and thus assumes the form of a truncated PainlevC expansion. 

coincides with the classical Backlund transformation. 
It must also be noted that the BT, in spite of its seemingly different aspect, actually 

3.3. An alternative formulation 

We now turn to a variant of the preceding formulation of the sine-Gordon problem, 
which closely parallels the standard treatment of the Ernst equations and will be useful 
for the next section. 

Let us perform a linear transformation on the two vectors X and U, which become 
the new column vectors A = (A, ,  A*, A3), B = ( B , ,  B 2 ,  B3): 

A , = X , + i X 2  A, = XI - iX2 A2 = iX, 

B,  = U ,  -iU2 B3= U l + i U 2  B2 = -2i U, 
(3.19) 
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or, in matrix form, 

The system (3.2), or (3.3), becomes 

B, = -A A A, ( 3 . 2 0 ~ )  

B, = A  A A, 

(A,A3-A;)= 1 

(3.20b) 

( 3 . 2 0 ~ )  

still with the Euclidean definition of the cross-product. 
The three equations: X i  = A', X'p = 1/A2, X ,  - X ,  = H become, respectively, 

[A",]S[A,] = A' 

[A",]S[A,] = 1 / A 2  

[A",lS[A,I = H 

where S = %-IN-' and [A"] denotes a transposed vector. Thus all first-order CY deriva- 
tives can be expressed in terms of any one of them, e.g. A,,; in particular, we obtain 
the following complete system of three equations for three unknowns A , ,  B, and cp: 

A:, + B:, = -A 'A: 

A:, + B:, = -A:/A2 

A,,Al, - B3,B3, = -A: COS cp. 

(3.21) 

If we finally perform the non-linear transformation: f= l / A l ,  (I, = A2/A,,  and note 
that (I, is the 'twist potential' associated with B3, equations (3.21) take the form: 

(f2 + +:)/.I-'= - A 2  

( f f p  + $a+, )/f2 = --cos cp 

(f'p + (I,;1/.f2 = - l / A 2  (3.22) 

which is a limiting case of a formulation of the Ernst equations originally proposed 
by Cosgrove [21] (see Q 4), where 8 =f+ i(I, is the complex Ernst potential. 

Now, the formulation (3.21), or (3.22), strongly suggests the introduction of two 
angular variables a, b-instead of the single angular variable cp considered up to 
here-defined as 

A I ,  = iAA, cos a 

B,, = ihA, sin a 

A,, = -(i/A)Al cos b 

B,, = -(i/A)A, sin b 
(3.23) 

where A may be complex. In terms of these, the sine-Gordon system may be very 
simply reformulated as the pair of equations: 

a, = - ( i / A )  sin b 

b, = i A  sin a. 

It is easily seen that both cp and $ 

c p = a + b  
6 G a - b  

(3.24) 

(3.25) 
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satisfy the sine-Gordon equation. The classical Backlund transformation is obviously 
the (reciprocal) transformation that exchanges the roles of cp and 4; it may also be 
viewed as the transformation that changes the sign of b, while leaving a invariant. 

This illustrates the fact that the property of being BT greatly depends on the choice 
of the unknown functions: a transformation that merely exchanges two variables is not 
usually considered to be a Backlund transformation! The point is that 4 plays the 
role of a pseudopotential when cp is given (and vice versa). 

4. The Ernst equation 

4.1. The Ernst and the Cosgrove formulations 

Under the simplifying assumptions of stationarity and axisymmetry, the Einstein 
equations in the vacuum give rise to the Ernst equation [7]. In such a case it has been 
shown by Papapetrou [20] that there is no loss of generality in adopting a metric of 
the form: 

1 
ds2=-[e”’2(dz2+dp2)+p2 dq2]- f [ d t - w  dp]’ 

f (4.1) 

and the Einstein equations are (see, e.g., [21]) 

A In f + (f ’ / ~ ’ ) ( V W ) ~  = 0 

div[( f ’/p’)Vw] = 0 

(4.2) 

(4.3) 
plus two equations involving the metric coefficient nt: 

The operators V, A =  (V)2 and div have their three-dimensional meaning and operate 
on axisymmetric functions. 

It is convenient to perform a complex transformation on the cylindrical coordinates 
p, z and replace it by 

cy = z+ip  

p = z - i p  
(4.5) 

which play the role of ‘characteristic coordinates’. We use coordinates cy, p instead 
of p, z throughout the rest of this paper. 

Ernst [7] introduced the twist potential + whose existence is ensured by equation 
(4.3), which is in conservation form: 

2f  + =-- 
a (cy-p)wu 

(4.6) 

i. According to Ernst’s Lagrangian and the Noether theorem, n is the potential that represents momentum 
conservation parallel to the symmetry axis. 
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In terms of $h the system of equations is 

together with 

II, =- ( a  - P I (  f :  + *:) 
f 2  

n. ( a  +)( f ; +  $hi) .  
f’  P -  

Ernst further introduced the complex potential 8 = ( f  +i$h) and showed that it satisfies 
the equation: 

(8+ 8 * ) A 8 = 2 ( V 8 ) ’  (4.9) 

which is, in CY, P coordinates, 

(4.10) 

Cosgrove [21] pointed out the importance of equations (4.8) defining the metric 
coefficient Il and proposed an alternative formulation of the Ernst equation, consisting 
of that pair of equations?, completed by 

(4.1 1) 

The great usefulness of this formulation comes from the fact that it is equivalent to 
the statement that II,, IIp and TIap are the coefficients of a pseudospherical metric. 

The Ernst equation is invariant under a duality transformation ( S )  [ 2 2 ]  characterised 
by the transformation formulae: 

n a p  = -(fah + cFle$hp) / f2 .  

while leaving a and p invariant. 
It also possesses an S L ( 2 )  symmetry group, denoted (G), which expresses invariance 

of the Einstein equations with respect to linear transformations of the coordinates t, 
cp [ 8 ] .  The image of ( G )  by the duality ( S )  is another S L ( 2 )  group, denoted by (H), 
which comprises scaling transformations and pure imaginary translations of 8 and of 
I/%‘ as well; the latter being Ehlers’ gravitational duality rotation [23]. A three- 
dimensional linear representation has been derived in terms of the Ernst potential as 

A ,  = l/f ‘ 4 2  = $ h / f  A3 = ( f  ’ + $ h 2 ) / f  (4.13) 
(see [81) 

i It is of interest to note that Il is dimensionless and is given by (4.8) in conservation form. In such cases, 
the consideration of the variable e” is useful and may be viewed as a generalisation of the Cole-Hopf 
transform [ 191. 
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meaning that the elements of the group (H) operate linearly on A , ,  A2,  A3; U is an 
invariant of the group. 

4.2. The ‘hydrodynamical’ formulation 

We now go back to equation (2.15)-which, we recall, may be 
dimensional gas dynamics-and substitute for r the expression 

r = -2ip/x* 

3 ( P  - .)/X*. 

In the same way as in 8 3.1 we define X’ the unit vector parallel 
and rewrite equations (2.15) in terms of X’. Forsaking the primes 
from now on), they become? 

U, = - (a  - p ) x  A xu 
U, = (0 - P)x A xp 

x2= 1 

derived from one- 

(4.14) 

to x :  X’ = x / J x 2 ,  
(rewriting X for X’ 

(4.15) 

which is a complete system of equations for the unknowns U and X. Its dual form, 
obtained by solving for X,, X,, is 

1 xu =- 
U, 

(4.16) 

The geometrical arrangement of the vectors is the same as in the sine-Gordon case; 
in particular, the trihedrals {X, X,, U,} and {X, X,, U,} are both orthogonal. Introduc- 
ing the two scalars: 

H = X, * X, 

K = (X, X, , X, ) = i2 
we have from the integrability condition of U :  

Using this result, it is easily shown that the pair of equations 

n, == -( a - P)XZ, 

np =(a + ) X i  

(4.17) 

(4.18) 

(4.19) 

is integrable and defines a potential U-later to be identified with the Papapetrou 
metric coefficient. We note the relations: 

H =no, 
( H 2 + K 2 )  = (XZ,)(Xi) = -rI,rI,/(a - P I 2  

which show that H and K can both be expressed in terms of n. 

(4.20) 

t The present formulation (4.15) may also be viewed as a special case of Kinnersley’s [8] equation (8.8). 
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Now, using the general analysis of P 2.2, we expand the second derivatives of X 
on the base {X, X , ,  X,}  and obtain a system of the form (2.3), with coefficients 

The resulting equation satisfied by the scalar coefficients H, K,  Il is 
C J 

4(a-p)2=O* 
aap(ln K ) + B C + H +  

(4.21) 

(4.22) 

Since H and K can be eliminated using (4.20), that is in effect an equation for the 
single unknown function n. We show in 0 4.4 that it does coincide with Cosgrove’s 
equation for 

Equation (4.22) can be reformulated in a way which makes its relation with the 
sine-Gordon equation more transparent, in terms of cp = tan-’(K/ H): 

(denoted y in [21]). 

(Pap + K f- sin(2cp) + ~ [ a , ( $ ) + a p ( 3 ]  =o.  
( . - P I 2  2 

The first two terms give the sine-Gordon equation far away from the symmetry axis. 

4.3. The Backlund transformation 

With our choice of dependent variables, the Backlund transformation turns out to 
coincide with the duality transformation 
i.e. 

n’= ( a  -p)x’n 
X ’ =  l / [ ( a  - P ) X ] .  

As in the sine-Gordon case, the validity 

( S )  given by (4.12), with f replaced by 1/X, 

(4.23) 

of the above transformation depends on the 
fulfilment of a non-linear (quadratic) constraintt on the pseudopotential X :  

( b, X i  + 2 HX,X, + C, X i) - K ’X’ = 0 (4.24) 

generalising (3.13), in addition to the linear system (2.3) and (4.21). Equation (4.24) 
may also be written in the form 

(xpx, -x,xp)2+x’(xa A x p ) ’ = o  (4.25) 

The proof of compatibility of (4.24) with the system (2.3) and (4.21) lies in the 
more readily interpretable in geometrical terms. 

observation that (2.3a, b) arise as consequences of (4.24) and ( 2 . 3 ~ ) .  

t When the problem is reduced to (third-order) linear ordinary differential equations, that constraint takes 
the form of a second-order non-linear Appell equation [21]. 
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4.4. Correspondence with the Ernst and the Cosgrove formulations 

We observe that the vector X ,  satisfies two scalar conditions: 

x*x, = o  x', = -&/ (a  - P )  
so that one of its components only is free, and similarly for X, .  This suggests 
representing X ,  and X ,  in terms of two numbers, a and b. It turns out that the 
parametrisation assumes a simple form if we first perform the complex linear transfor- 
mation on X (equation (3.19)) introduced in 0 3.3, which transforms it into a new 
vector A.  The derivatives of A may then be parametrised in the following way: 

A - (3) 'I2A,  cos b 

A,, = (&) (AZ cos b -sin b) .  

P - f f  

f f - P  P - f f  

A l e =  ( '',Al cos a 1, - a 

(4.26) 
1 / 2  1 / 2  

A,, = (") (AZ cos a+s in  a )  

The vector U too is linearly transformed by (3.19) into another vector B, whose first 
derivatives are given by formulae similar to (4.26); in particular, three simple relations 
generalising (3.21) are found which, after performing the non-linear transformation 
A ,  = l/L A2 = $/A become 

( f  ',+ $ : ) I f  '=W(f f  - P )  

(Lf,  + $&3)lf2 = -H = -rL, 
( f ; + $ ; ) l f 2 = - r I , / ( f f  - P )  (4.27) 

which is Cosgrove's system. This completes the proof that the equation we started 
from (4.15) is equivalent to the Ernst equation. 

4.5. Conformal invariance and the spectral parameter 

The conformal invariance of equation (4.15) is spoilt by the presence of the factor 
( a  - P )  but can be restored by rewriting it in the form: 

U, = -rx A x, 
rm, = 0. 

U, = rx A X ,  x2= 1 
(4.28) 

The formulae derived in the preceding sections can be easily rewritten, without need 
for further calculation, in conformally invariant form by merely inserting factors 
y, = a ,  In r, y, = a, In r where needed. Thus equations (4.21) and (4.22) become, 
respectively, 

a,=  -yp/2 a ,  = -y,/2 D = - H  

bo = a,(ln K )  + y,/2 

b, = YLYrI, 

co=ap(ln K ) + y p / 2  

CI = Y p n p  
(4.29) 

d,,(ln K )  + BC + H --;yay, = 0. (4.30) 

Together with the equation rap = 0, which is, in terms of y = In r, 
Ye, = -YaYp (4.31) 
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equation (4.30) constitutes a complete system for the two unknowns II and y. The 
essential simplifying feature, which permits the introduction of a spectral parameter, 
is that the function y occurs through the product yayp only in (4.30) and this product 
does not change under the conformal transformations: 

a ’ = l / ( a + k )  

P ’ =  1/(P + k ) .  

We have indeed 

Hence 

U 2  a + k  
where 

1 
Y& = ( a  - P b 2  Y b = - ( , - p )  

(4.32) 

(4.33) 

The arbitrary constant k does not enter equation (4.30) for the invariant unknown 
function II, but it does appear as the spectral parameter in the linear equations (2.3) 
and (4.29) defining the pseudopotential X.  

For more details we refer the reader to Kramer and Neugebauer’s review [24]. 

5. A generalised sine-Gordon equation 

Comparing equations (3.22) and (4.27), it becomes clear that the sine-Gordon equation 
is nothing other than the limiting form of the Ernst equation far away from the symmetry 
axis: it may be recovered from (4.27) by substituting 

a = ao+x 

P = P o + Y  

II=i(a - P ) ’ +  F ( x , Y )  Fxy = H + 1 

(5.1) 

and letting cyo, Po+ 03 while keeping the new coordinates x, y finite; the result is the 
sine-Gordon system in coordinates x, y. 

In the same way, the limiting form of the axisymmetric Einstein-Maxwell equations 
(considered in § 6), when ao ,  Po become large, is a generalised sine-Gordon equation, 
which is called here the sine-Gordon-Maxwell equation. Its precise form may be 
derived from the Einstein-Maxwell system by merely replacing all factors p, i.e. (a - P ) ,  
by a constantt. 

Following Kinnersley ([8], equation (8.8)), the Einstein-Maxwell problem is formu- 
lated in § 6 as 

B L = ( a - P ) f U k A j A k ,  

BL = -( LY - P )  f ‘jkAjAkp 

t Since the Einstein-Maxwell equations have been identified as a particular tridimensional non-linear v 
model [25], the sine-Gordon-Maxwell equations must be the same, restricted to two dimensions. 
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where A i ,  Bi are eight-dimensional vectors and f Ok is a totally antisymmetric tensor 
whose components are also given in [8]. The sine-Gordon-Maxwell limit is thus 

Bb = f iJkAjAka 

Bb = - f 'JkAjAkp. 

We will often write for conciseness this system in the form 

B , = A A A ,  

Bp = - A  A Ap 

recalling that f Ok is totally antisymmetric. 

(5.3) 

(5.4) 

5.1. Basic geometrical and group properties 

The system (5.2) is manifestly invariant under a symmetry group (H'), which has the 
SL(3) structure, and A, B belong to an eight-dimensional representation of the group. 
Four of the components of A only are independent and they can be parametrised in 
the following way [8]: 

A1 = l/f A2 = */f A ,  = 88*/ f A4 = @If 
( 5 . 5 )  

A 5  = 0*/ f A6 = 0 8*/ f A ,  = a*$/ f A8 = 1 - 3 m * /  f 

in terms of two real parameters f; (I, and one complex, 0; 8 = (f - 00" + i$) is to be 
identified with the complex Ernst potential [26]. These are the eight covariant com- 
ponents. A metric gij can also be defined, whose components in the same base are [8] 

g13 = g47 = g56 = - g 2 2  = g88 = 3. (5.6) 

The tensor f Ok appearing in (5.2) is totally antisymmetric and its components are given 
in [8] as 

(5.7) f 1 2 3  = - f 2 4 7  = - f 2 5 6  = 1 
2 f 1 6 7  q 3 4 5  q 4 7 8  = - f 5 6 8  = i/2. 

5.2. More concise formulation, based on Cosgrove's method 

The formulation (5.2) is extremely concise, as long as one does not write down explicitly 
all eight components. It is possible to derive a formulation involving only four complex 
variables U l ,  U,, V , ,  V, in the following way. 

Cosgrove's [21] formulation starts with the three equations defining the derivatives 
IT,, r I p  and ITmp of the metric coefficient IT. In the Einstein-Maxwell case, these 
equations assume the form: 
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where V, W are the real and imaginary parts of the complex potential @ and W,, F, 
is an abbreviation for 

W,=(Cla+2(VW,-wva) 

v, = *, +2( vw, - wv,). (5 .9 )  

(It should be noted that the above pair is not integrable and the symbol W, without a 
subscript, has no meaning.) 

As mentioned above, the sine-Gordon-Maxwell limit is obtained by replacing 
rI,/(ct - p )  and rI,/(ct - p )  by constants, and ne, may be relabelled as H. 

The first two equations (5.8), being a sum of four squares, suggest the following 
parametrisation in terms of four complex numbers U , ,  U,, VI, V,: 

2 
U --(V,+iW,) 

1 
' -Jf 

' -J f  

U --(W, -ifa) 
-f 

-f 
1. 2 

V --(V,+iW,) V --(*@-if,) 

or, using the complex Ernst potentials 8, @, 

( 8, + 2@*@,) 2@a 
U,  = u 2 = 7  

if  

(8, + 2@*@,) 20, VI = v2=Jf- if  
The parametrisation is thus 

8, = ifU, - @*J's U, 

8, = ifv, - @ *sf V, 

U, U,* - U,  UT = 1 

v2v,*- V,VT=l 

@, =+sf U, 

@, =;sf v,. 
The three equations (5.8) then are, in the SGM limit, 

P + P * = 2 H  

where, by definition of P, 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

P= u2v,*- U,VT. (5.14) 

Thus H is the real part of P; we shall denote its imaginary part by K :  

P E  H + i K .  (5.15) 

A complete system of equations for the unknowns U,,,, only, excluding the 
Ernst potentials, is obtained by expressing the conditions of integrability of 8 and @, 
given by (5.12), and of, e.g., B, and B4. The resulting system is 

U,, = f i [ 2 U , V 2 +  U2(V,+ VT)] 

v,, = $[2 U, V, + v,( U,  + UT)] 

1 
U -,(P-UIV,) 

v -,(P"- UIV,) 

-21 

l e  -21 

(5.16) 
1 

with P defined by (5.14). 
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5.3. Projection on the tangent plane to ( 2 ) ;  the third invariant L 

Following the general method outlined in 0 2.1, we now calculate the second derivatives 
of A and B, expanding them on a base in the eight-dimensional space. First we will 
consider the projections on the hyperplane tangent to the SL(3)-invariant surface (E) 
which is the locus of A as the Ernst potentials ‘8, are arbitrarily varied. Of course, 
A, and A, belong to the tangent plane and it can be seen that B, and B, are tangent 
vectors too, so that, taken all together, these four vectors span the four-dimensional 
hyperplane tangent to ( 2 ) .  

Before computing the projections, some geometrical results concerning the first 
derivatives are needed. By the very definition (5.12), the derivatives A, ,  A,  are seen 
to be calculable in terms of U , ,  U,, VI,  V2 and the Ernst potentials; the derivatives 
B,, B,, which are given by (5.4), are similarly calculable too. The following relations 
between derivatives are then easily seen to hold: 

and 

B, A Bp = - A ,  A A,  

A,  A B, = -A ,  A Bp 

(5.17) 

(5.18) 

The last two relations indicate that four of the cross-products only are independent; 
they are 

A ,  AA,  A ,  A Bp A ,  A B, A,  A Bo. 

These four vectors span a four-dimensional subspace orthogonal to ( 2 ) ;  together with 
the first derivatives A,,  A,,  B,,  B, they form a base of the eight-dimensional rep- 
resentation. 

The second derivatives A,,, B,, can be explicitly determined: 

A,, = A ,  A B, 

B,, = - A ,  A A , .  
(5.19) 

Next, the second derivative A,, may be formally expanded as 

A,, = aoA, + a , A ,  + bOB, + 6,Bp + * (5.20) 

where the dot symbolises the part orthogonal to (E). Using the properties (5.17) and 
(5.18) we have 

A , . A , , = O  

A,  A,, = H ,  

B, A,, = Bg 

Bp * A,, = - K , .  

(5.21) 

The third projection, B, * A,, = B 8 ,  remains a priori undetermined, meaning that the 
quantity B8 is a new SL(3)-invariant scalar, in addition to the already known scalars 
H and K (the index 8 is a reminder of the dimensionality of the representation). This 
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yields four equations for the coefficients of the expansion but, introducing two complex 
numbers 

1s ao+ibo m = - a , + i b ,  

these can be rewritten as a pair of complex equations?: 

I P - m = P ,  

1 - mP* = iB8. 

(5.22) 

(5.23) 

The determinant of this system is 
6 = 1 - PP*. (5.24) 

In the same way the derivative A,, may be obtained in the form 
A,, = cOA,, + CIA, + doB, + d, Bp + * (5.25) 

where co, c,, do, d,  are real and 
1”=(c,-id,)=(iC,-PP,*)/6 

liz= -(co+ido)= -(P,*-iP*C8)/6 

and C8 is a fourth SL(3)-invariant scalar. 
From A,,, B,, may be at once deduced, using the formula 

(5.26) 

B,, = A A A,, (5.27) 

0 whenever X is orthogonal 

(5.28) 

substituting the expression (5.20) and noting that A A X 
to (Z). We thus find 

B,, = aoB, - a l B p  - boA, + b,A, 
without any residual component orthogonal to (Z)! By symmetry 

Bop = -COB, + clBp + doA, - d,Ap. (5.29) 
The above equations (5.28) and (5.29) are linear in both A and B, which will turn out 
to act as (linear) pseudopotentials (see 5 5.4). 

We now turn to the determination of the complete set of PDE satisfied by the four 
basic unknowns, the scalar coefficients H, K,  B8, C8; this can be achieved through an 
examination of the conditions for integrability of B, namely by requiring dp(B,,) = 
d,(B,,). Differentiating (5.28) and (5.19), we respectively obtain 

dp(B, , )= (aopB,  -a,pB, - ~ o p ~ , + ~ l p ~ p ~ + ~ ~ l ~ p p - - l ~ , p ~ + ~ ~ o ~ , p  -boA,,) 

d,(B,p) = B, A B a p  + Be, /? 4 3 .  

(5.30) 

From the property that, whenever X and Y are both tangent to (Z), their cross-product 
X A Y is orthogonal to (E) , we note that the last term, B,, A B,, is orthogonal to (Z); 
then, projecting (5.30) parallel to (Z), this term can be eliminated and the required 
equations of motion can be derived, equating to zero the coefficients of A,, A, ,  B,, 
B,. They are 

P,, = :(I + PP* - 2 ~ ’ )  - - [ (P*P ,P ,  - PL,L~)  - i(L,p, + L,P,)I 
1 
6 

(5.31) 

L,, = fi( P - P * )  = - K. 
(The coefficients B8, C8 are related to L by B8 = L,, C8 = -Lo.) 

(5.32) 

t The complex equations for 1 and m could be directly obtained through a consideration of the complex 
vector A + iB, instead of separately considering A and B. 
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Equations (5.31) and (5.32) are the desired SL(3)-invariant system of equations 
for two scalars: one complex (P), the other real (L). The system may be somewhat 
simplified through the transformation 

p = Q eiL (5.33) 
which gives 

(5.34) 

5.4. Eight-dimensional pseudopotentials 

The expression (5.20) of the projection of the second derivative A,, may be completed 
by adding the component orthogonal to (E): 

Using the geometrical result that, for all X ,  A A X  is tangent to (Z), we see that the 
two terms on the RHS are the parallel and orthogonal projections, respectively; therefore, 
we have 

A,, = - A  A B,, - A ,  A B , .  

A,, = a o A , + a , A p + b o B , + b , B , - A ,  A B , .  (5.35) 
As already noted, the formulation may be appreciably simplified through the consider- 
ation of the complex vector C = B + iA and its conjugate, C* = B - iA. 

Following the general method and notation of D 2.1, we then choose the following 
complex base vectors: 
E ,  = -C, A C, E 2 =  c: A c$ E, = c, A c: E4= -CO A c$ 

(5.36) 

The CY derivatives of E,-E, are already known, being given by (5.35), (5.19) and (5.28); 
the derivatives of the remaining El-E4 may then be reduced to cross-products involving 
first derivatives only, which can be computed without difficulty. The result is an 
eight-component ordinary differential equation of the general form (2.1 a ) :  

E5 = C, E6= C:  E7= -Cg E8 = - C,. 

(5.37) 

where the matrix coefficients are functions of the four scalars P, P*, B, and C , ,  in the 
following way: 

M =  (5.38) 

1 and m being given by (5.23). 

( i  = 1,2), ?' and P*, 
By the general symmetry (here called (F)) which exchanges a and p, U, and V, 

and c,, 1 and [ m and G, another ODE of the form (2.16) 
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also holds: 

(5.39) 

where is a matrix whose coefficients correspond to the coefficients of M by the 
above transformation. 

The equations of motion (5.31) and (5.32) may be recovered by forming the 
commutator [ M ,  A?], as in (2.2). 

The pair of equations (5.37) and (5.39) is an overdetermined linear system for the 
column vector ( E , ,  . . . , Es); each element E, thus plays the role of pseudopotential 
when the four basic unknowns P, P*, B 8 ,  c8 (which are independently determined 
by the equations of motion (5.31) and (5.32)) are given. Furthermore, a pair of 
eighth-order linear ODE for each pseudopotential E,, may be derived through the 
elimination of the seven remaining base vectors Ei ( i  f i o ) ;  the general solution possesses 
eight linearly independent solutions, which are the eight components of Eio.  

It turns out, fortunately, that one does not have to solve pairs of eighth-order 
equations in order to obtain pseudopotentials. The eight-dimensional representation 
separates into a product of fundamental representations of dimension 3 and a much 
simpler set of pseudopotentials may be found, which are given by pairs of ODE of the 
third order only; they are derived in the following subsection. 

5.5. Separability into a pair of fundamental ( 3 0 )  representations 

The four quantities U, and V,, which are given in terms of A by (5.10) and ( 5 . 5 ) ,  are 
pseudopotentials too. They present the drawback of occurring non-linearly, but they 
are easier to handle in explicit computations, being fewer in number than the eight E, 
considered in the preceding subsection. 

We will have to calculate the (Y derivatives of U1,2 and the /3 derivatives of 
which are not given by (5.16); they are, however, related to the second derivatives 
A,,, A,,, which have already been determined. We thus find 

(5.40) 

where, by definition, 

A =  UIV2- UZV, hence AA* -6. (5.41) 

Exchanging the coordinates a, /3 we similarly have, for the /3 derivatives of V,,  

The quantities U,, V, ( i  = 1,2) are thus pseudopotentials (0ver)determined by equations 
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(5.16), (5.40) and (5.42); an essential simplifying property is that the equations determin- 
ing U , ,  VI separatefrom the rest ofthis system. Equations (5.16) for U ,  , V, are already 
in separated form; the separability of equation (5.40) for U,,  arises from the fact that 
the factors U $ / A * ,  VT/A* occurring in this equation may be rewritten in terms of U , ,  
VI as 

U,*/ A* 
V,”/A* ( P V ,  - U , ) / &  

( VI - P* U ,  )/ 6 
(5.43) 

The result of this substitution is a system equivalent to a second-order non-linear ODE 

for U, or VI: 

1 
U,  , = li ( U: - 1 )  + - [ ( i  L, - P* P, ) U ,  + ( P, - i PL, ) Vl ] 

6 

v,,=~i(U,v,-P*) 
(5.44) 

and a symmetrical system which may be deduced from the above by exchanging the 
roles of a and p. 

We now take advantage of the manifest Lorentz invariance of the scalar equations 
of motion (5.31) and (5.32) and introduce a spectral parameter A (which may be 
complex) in the above equation (5.44) and its (?)-symmetrical equation, which become 

U,,  = A (  U:- l )+iU,L,  +%( V I  eiL-Q*U1) 

VI , = A ( U ,  VI - P* ) 

6 

1 
U,, =--‘P- U I V , )  

1 Q* V I P  = --( 1 - V : )  - i V I  L, +2( U, e-iL - QV,). 
6 

(5.45) 

(5.46) 

The variables a, p have here been rescaled by factors of two in order to get rid of 
reducible factors of in the above equations; then the scalar equations (5.31) and 
(5.32), which are the compatibility conditions of (5.45) and (5.46), become 

d,,(ln Q ) + + = -  Q Q  8 
Q S  P 

( 5 . 4 7 ~ )  

L,, = 2i( P - P * )  = -4K (5.47b) 

p Q eiL. (5.47c) 

We use the form (5.47) of the equations in what follows. 

transformation: 
The system (5.45) and (5.46) is non-linear, but it can be linearised through the 

X , / X  = -AU1 -$Lo 

X , / X  = V,/A +$LP 
(5.48) 

which produces a linear system of the general form (2.3) for the (number) X ,  with 
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b l = A 2 ( i + ~ L p ) - ( - + - +  iQ e iL  3L2, iL,, iQ*Q,L,) 
46 16 4 46 

) + ( -A+-+- 3L2 iL,p iQQ$Lp) 
16 4 46 

(5.49) 

The equations of motion (5.47) may be seen to arise by application of the general 
compatibility conditions (2.4) and (2.5). 

A pair of third-order ODE for X can be deduced (see (2.7)), which present three 
linearly independent solutions XI,  X , ,  X 3 ;  these are the components of a three- 
dimensional vector X,  which provides an explicit fundamental representation of the 
underlying SL(3) symmetry group, (H'). 

Equations (5.47) are complex and their complex conjugate forms must be satisfied 
too; they may be viewed as the compatibility conditions of a set of equations for UT, 
VT, complex conjugate to the system (5.45) and (5.46) (the spectral parameter A must 
be formally treated as pure imaginary under complex conjugation: A *  5 - A ) .  The 
corresponding linearising transformation is the conjugate of (5.48) and the linear 
pseudopotential X *  (of which X *  is an arbitrary component) satisfies a system of the 
form (2.3) with coefficients which are the complex conjugates of those listed in (5.49). 
Thus the three-dimensional vector X" provides another fundamental representation 
of (HI). 

Still, the potentials X and X *  cannot be chosen completely independent from one 
another: there is a condition that they must satisfy, ensuring integrability of the 
remaining potentials U,, V, . This can be seen most simply from the fact that the ratio 
V,/ U, can be expressed in two ways against U , ,  VI as 

l + V , V T  v, P * + V , U $  
P + U , V T  U,  l + U , U f  

- -  (5.50) 

and hence the compatibility condition: 

(PV,  UT+ P" U ,  VT) - (U1 UT+ VI  V f )  = 6. (5 .51 )  

The above constitutes a bilinear constraint on X and X * ;  when, e.g., X is given, the 
constraint on X *  is linear and becomes 

(5.52) 

In the particular case where L = 0 and P is real, the scalar equations reduce to the 
sine-Gordon equation (3.16), with P =  H ;  the potential X may then be chosen real, 
i.e. X *  X ,  and the bilinear constraint becomes the quadratic relation (3.13) which 
was found to be relevant to the sine-Gordon problem. 
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The Backlund transformation, based on linear pseudopotentials X ,  X *  satisfying 
the bilinear constraint, will be discussed in the following subsection. 

5.6. The Backlund transformation 

The sine-Gordon-Maxwell system studied here possesses an SL(2) group of symmetry, 
which corresponds to the group (G) of linear (t, cp) coordinate transformations [8] of 
the axisymmetric Einstein-Maxwell case ( 0  6). Finite transformations of the group 
constitute Backlund transformations of our system (5.47). 

Two of the three generators are trivial: the first, (GI),  represents infinitesimal 
translations of the metric coefficient w (0 is related to a component of the eight- 
dimensional vector B :  w = -$&), while leaving the Ernst potentials 8, @ invariant. 
Another, ( G3), is the generator of scale transformations: 6@ = @, 6 8  = 28, 6w = -2w.  
One generator only, ( G2), presents interesting transformation formulae: 

= +( 8 4  - @ B , )  68=-8Bl-@B5+iB2 

SB, = f( B: - A:) S A l = A I B I .  

The resulting formulae for Ui,  V,  are 

6U, = i U,/ f 

SV, = -i V,/ f 

6U2=iU2/2f 

SV,= -iV2/2f: 

(G,) and ( G3) obviously leave U, and V,  invariant. 

of t and cp coordinates in the Einstein-Maxwell case, may be derived: 
By exponentiation of ( G2), a finite transformation, corresponding to the interchange 

f '= w2f + 1/4f 

W '  = -4wf2/( 1 + 4w2f2). 
(5 .53)  

In terms of the polar representation (U ,  6 )  of the complex number ( w  +i/2f), namely: 

a e i e ~ ~ + i / 2 f ~ $ ( i A l - B l )  (5.54) 

the finite transformation also becomes 

IT'= l/a O ' = . r r - O  f '= u2f w ' =  - w / a 2  
( 5 . 5 5 )  

$( B,Q - B4) 

and 

whence 

(5 .56 )  

(5.57) 

Equations (5.56) and (5.57), with 6 determined by (5.54), define the proposed Backlund 
transformation. $e show in the appendix that it generates the two-soliton formula, 
starting from the vacuum. 
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In order to be able to apply the BT we must now provide a means of calculating 
A , ,  B,  in terms of our basic unknowns P, L, U,, V,; the new potential 0 will then be 
determined as 

tan 0 = -A , /  B , .  (5.58) 

Remembering the definition (5.48) of X ,  and equation (5.10) satisfied by f, we may 
identify 

A ,  E l / f=  - X X * .  (5.59) 

Rewriting X ,  for X ,  the two remaining components X 2 ,  X 3  of X may also be identified 
with the Ernst potentials as 

@ = X Z / X ,  8 = -x3/x1  (5.60) 

together with the complex conjugate relations; the resulting eight-dimensional rep- 
resentation is 

A ,  = -XlXT A2 = $ ( X , X , *  - X , X T )  A3 = -X,X,* 

A4 -X2XT A5 = - X I X f  A6 = X2XT (5.61) 

A,  = X , X :  

The two vectors X and X *  must satisfy a constraint: (8 + 8*) = 2(f-  @@*), i.e. 

Ag = 1 + 3XzXT. 

f ( x , x , * + x 3 x ~ ) - x 2 x ~ =  1. (5.62) 

Using the three-dimensional restriction of the metric (5.6), this also becomes 

x. x* = 1. (5.63) 

It is interesting to remark that, in the case where P is real ( P E  cos cp, LEO) ,  
equations (2.3) and (5.49) for the (real) vector potential X coincide with the sine- 
Gordon equations (3.6) and (3.19) for the vector potential A (denoted by ASG in what 
follows). Thus X may be identified with A S G  and the constraint (5.63) reduces to 
A& = 1, which are ( 3 . 3 ~ )  and (3 .20~) .  According to (5.60), the Ernst potentials are then 

@ = 9sc 8 E - ( f ; G +  l)=O f =  -f&. (5.64) 

The sine-Gordon equation satisfied by cp = cos-' P is, using ( 5 . 4 7 ~ )  where Q = P, 

pap = -sin cp. (5.65) 

On the other hand, the sine-Gordon-Maxwell system obviously reduces to sine- 
Gordon also in the case where the electromagnetic complex potential @ = 0 and where, 
as a consequence, the eight-dimensional vector A possesses three non-vanishing com- 
ponents A , ,  A2 and A , ,  which can be identified with the three-dimensional sine-Gordon 
vector potential A S G .  That case is characterised by the properties: 

6 = 0  Q = 1  p E elL P* = 11 P. (5.66) 

We may identify L E  cp, P = el', and using (5.47b) it can be seen without calculation 
that cp satisfies a sine-Gordon equation: 

p a p  = -4 sin cp (5.67) 
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with a normalisation diferent by a factor 4 i  from that in (5.65) ! 
We now go back to the Backlund transformation and  the construction of a potential 

0, given by (5.58). The vector A having been already determined in terms of X ,  X *  
in the form (5.61), the remaining quantity B ,  occurring in the definition (5.58) is 
obtainable by quadrature of 

B,,  =2i(XX:-X*X,)+XX*L, 

B,,  = -2i(XX,*-X*X,)+XX*L,. 
(5.68) 

In the case where P is real and  L is zero, X may be chosen real and  B,  identically 
vanishes. The formula (5.58) gives 0 = 57-12 and the BT formula (5.57) reduces to 
P'= -U, V,* - U ,  VT. In such a case the quantities U,, V ,  may be identified with the 
sine-Gordon angular variables a, b introduced in 8 3.3, in the following way: 

U ,  = cos a 

VI = cos b 

U, = i sin a 

V, = -i sin b 

u*=-u, V?=-V .  

(5.69) 

and  we have P' = cos cp' = cos 4. Thus the proposed BT reduces, in this particular case, 
to the sine-Gordon classical Backlund transformation which exchanges cp and 4 ( 9  3.3, 
equation (3.25)). 

5.7. Three-dimensional vector equations 

We have seen ( §  5.5) that the sine-Gordon-Maxwell system can be formulated as a 
pair of three-dimensional vector equations of the form (2.10) with coefficients satisfying 
(2.6) and (5.49). There are two vectors involved: one has been identified with the 
vector X considered in 9 5.6, whose components determine the Ernst potentials 
(equation (5.60)); another, U, is related to the complex conjugate X *  of X ,  but not in 
a simple way. It thus appears desirable in the present case, in order to preserve the 
basic symmetry of complex conjugation, to rewrite the general system (2.10) in a 
modified form where the two unknown vectors are X and X * ,  rather than X and U. 

In view of the form of the constraint (5.62) and (5.63) it is best to replace U by a 
new vector (hereafter, denoted by U also) whose components are respectively 

U '  = XT/2 U2 = -x* 2 u3 = XT/2. (5.70) 

They may be viewed as the contravariant components of X" (the upper index will also 
serve to distinguish the vector components U '  from the two variables U, ( i  = 1 ,2 )  
introduced in 9 5.2). 

The vector equations can be deduced starting from the identity 

A U T = ( P * U , -  V,) (5.71) 

where we substitute (using (5.11) and (5.60)) 

U, = a, (X?/X,) 
A 

* Thus the transformation (5.64) which relates the sine-Gordon equation to the real sine-Gordon-Maxwell  
equation, unlike all other transformations considered in the present paper,  also affects the value o f  the 
independent variables a, p, namely the transformation formulae (5.64) must be completed by a = 2 a s ~ ,  
P = 2 P S G .  
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Also, using the definition (5.48) of X I ,  we substitute 

Then the identity (5.71) is 

which is the third component of a vector equation: 

R(  U, + U ,  U )  = P*X A X, + A*X A x,. 
Another equation is obtained by exchanging the roles of a and p :  

1 -R( U, + uoU)  = 7 X  A X ,  + PX A X, 
A 

and of course, we also have 

U * X = l .  

(5.72) 

(5.73) 

(5.74) 

(5.75) 

We proceed to aqalyse the main properties ofthe above system (5.73)-(5.75) without 
at first making any assumption on the coefficients. Since they occur in a homogeneous 
way, however, we can always set without loss of generality: 

(X, x,, X,) (5.76) 

as in 0 2.3. The system may be solved linearly for X,, X,, in a form 'conjugate' to 
that of the original system: 

-R*(x, - U,X) = PU A U, + A ' U A U, 
(5.77) 

1 
A 

R * ( X p - U o X ) = , U A  U,+P*UA Up 

where, by definition of R* and 6, 

-an* = (1 - PP*) = 6. (5.78) 

It is also of interest to note the result: 

-d U .  d X  = ( A  * d a 2  - 2 H  d a  d p  + dp2/A2) + ( U ,  d a  + dp)' (5.79) 

where we have introduced: H = (P + P*)/2, K = (P - P*)/2i. 

we thus find 
We expand the second derivatives of X on the base {X, X,, X,} in the usual way; 

X,, = box, + BX, + b , X  

where 

b,  = - ( U ,  bo + U , B )  + ( U ,  , + U:  + A 2) ,  

x,, = cx, +cox, + c,x 
Similarly 

where 

C] = - ( u ~ c ~ + u , C ) + ( U , ~  + U : +  l / h 2 )  
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and 

X m p  = (up - CO) + (w ,  - bo& + DX 

where w = In fl as usual, and 

D = i ( a o ,  + a l p )  - (sow, + a lwp)  + (aobo+ alto) + (aoal -  H ) .  

Furthermore, a,, a , ,  bo and c, satisfy the equations 

a lp  -ao, = 2iK (5.80) 

bo/h2-2Hco= -Pwp - P$ + (P-2P*)ao-A2C + ( w ,  - a,)/A2 

-2Hb,+A2c,= -P*w, - P, + ( P * - 2 P ) a ,  - B/A2+A2(wp - u O ) .  

The sine-Gordon-Maxwell system is, as we show below, entirely specified by further 
requiring 

w, = a ,  + bo 

wp = a,+ CO 

(as in (2.6)) and also (ao, + a l p )  = 0, which may be rewritten as 

a,=iLp/4 

a ,  = -iL,/4. 

(5.81) 

(5.82) 

There are thus four unknown functions: fl, P, P *  and L, and a free (constant) parameter, 
A. 

The equations of motion are provided by the general conditions (2.4) and (2.5); 
the first equations ((2.4a), ( 2 . 5 ~ ) )  yield 

(5.83) wap + BC + H =O.  

The second equations ((2.4b), (2.5b)) give, respectively, 

ap ( P* B) + A 2( BC + P*) = o 
1 

A 
a, (PC) + 7 ( B C  + P) = 0 

(5.84) 

both of which can be integrated as 

P*B/A2=w,-iL,/4-F'(a) 

A'PC = wp +iLp/4-  G'(P). 

The resulting expressions for B and C are 

P 
s 

P* 
A 2s 

B = -A2- [  QI/ Q - F'( a ) ]  

c = ----[Q$/Q*-G'(P)I 

where we have introduced Q = P eCiL, Q* = P* eiL. Finally equation (5.83) yields a 
second-order equation for P: 

B 
A' Pdap(ln P) = -3 ln(PP*) + 6(1+ BC/P*) -4iKP (5.85) 
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which, in terms of q = In Q, is 

9 a p  + ( q o  - F X q p  + G’)/6 = 8 / P .  (5.86) 

The potential L may be redefined as LS i( G - F )  without affecting P or P*. Therefore 
the arbitrary functions F and G are reducible and can be set equal to zero without 
loss of generality. Equation (5.86) then reduces, as announced, to the sine-Gordon- 
Maxwell equation: 

q a p  +qoq,/8 = SIP (5.87) 

(the equation L,, = -4K is also satisfied by virtue of (5.80)). 
In order to construct the Backlund transformation we must, as shown in § 5.6, 

introduce an appropriate generalisation of the complex vector C = A + iB. In the 
present formalism the quantity that corresponds to the eight-dimensional vector A is, 
obviously, the tensor: 

A: E -X,U’ (5.88) 

the correspondence being given by (5.61) and (5.70). The quantity corresponding to 
C is a tensor C:, defined by 

(5.89) 

(this is easily shown to be integrable by cross-differentiation). A second tensor Cf’ 
may also be defined as 

cc = - X , (  U; + U ,  U’) 

C$=-UJ ( X , ,  - sox, 1 
which is related to A{ by 

C {  + CF’ = A:. 

Rewriting X for X , ,  U for U’, C for C:, the Backlund transformation is, in the light 
of the results of § 5.6, 

C’= 1/c 

C*’= 1/c* 

X I =  x/Jcc* 
U’= u/Jcc* 
L‘=  L+2i  ln(C/C*) 

p’ = --p C* - C*C& 
c C Z ( C + C * )  

C cc:c; p*’ = -- 
c* p* - C*2(C + C*)’ 

(5.90) 

(5.91) 

The component X of X may be chosen arbitrarily, but then there exists a linear 
condition to be satisfied by the component of U, as shown in § 5.5 (equation (5.52)). 
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6. The axisymmetric stationary Einstein-Maxwell equations 

Papapetrou's metric is still compatible with a non-zero electromagnetic vector potential, 
with components A , = A ,  =0,  A , = A ,  A , =  V in coordinates z, p, 9, t .  Ernst [26] 
introduced the twist potential W associated with A and the complex electromagnetic 
potential @ = V+ i W, in addition to the twist potential $ already existing in the vacuum 
case ( 5  5.1). Ernst's formulation for the Einstein-Maxwell equations is then 

fA8=(V8+2@*V@) . V 8  

f A@ = (V 8 + 2@*V@) * V@ 

8 = ( f  - @@*) + i $  

which generalises Ernst's equation (4.9). 
The analysis of this system closely parallels that of the sine-Gordon-Maxwell system 

studied in the preceding section (9 5). Cosgrove's equations (5.8) and Kinnersley's 
formulation (5.2) in terms of a pair of eight-dimensional vectors A and B have already 
been given in § 5. The relation between A and the Ernst potentials (5.5) remains 
unchanged, as well as equations (5.9)-(5.12). 

It is worth remarking here that, as in the sine-Gordon-Maxwell limiting case, there 
are two ways in which the Einstein-Maxwell system reduces to the vacuum Ernst 
equation: the first of course occurs when the electromagnetic potential @ identically 
vanishes; the second when $ and, e.g., W simultaneously vanish. The transformation 
formulae relating these two cases are still given by (5.64): 

i f " = J f  $ E =  v IIE = II/4 H E = P = P *  K E = J 6  (6.1) 
(where the upper index E refers to the Ernst case: (PE = 0) and they too involve rescaling 
the unit length by a factor 2: 

CYE= a / 2  p E = p / 2 .  

6.1. n e  U,, V, formalism 

Equations (5.13) must be replaced by 

N =  (U2Uf-  U1 UT)=-I I , / (a  - P )  
M = ( v, vf - VI VT) = rib/ ( a'- p ) 
P " ( U , V f - U , V ~ )  

H E (P+ P*)/2 = ne,. 
The new variables U,, V ,  ( i  = 1,2) satisfy a system generalising (5.16): 
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We note the relation: 

Vi ,  - U,, = - K .  

6.2. The eight-dimensional representation 

The scalar products given in (5.17) become, in the Einstein-Maxwell case, 

A : =  N A,  - A,  = H A ; =  M 

B Z , = ( a - p ) ' N  B, * Bp = - (a  -P)'H B ; = ( a - P ) * M  

A ,  B, = 0 = A,  Bp 

A ,  * Bp = - (a  - P ) K  = A ,  - B,. 

(6.6) 

We use these constraints and their derivatives and project A,,, B,, on the four- 
dimensional subspace spanned by the four derivatives A, ,  A,, B,, B,, in the same 
way as in § 5.3: 

A,, = a,A, + a , A p  + b,B, + b,B, + - 
Bo, = -bo(a - w)'A, + b l ( a  - p ) * A ,  + [ a o +  l / ( a  - p ) ] B ,  - a,B, .  

(6.7) 

As in (5.22) we introduce complex numbers: 

1 = ao+i(a - P ) b ,  

m = - a , + i ( a - p ) b ,  

and obtain a linear system for these unknowns 1 and m :  

-N1+P*m=-+N,- iB8/ (a-p)  

PI - Mm = Po + ( P - N ) /  2( a - p ) (6.9) 

where 

B8 = Bm ' = ( a  - P ) ( A ,  A , ,  A , , )*  (6.10) 

The determinant is 

6 = ( M N  - PP*) 

-AA* (6.1 1) 

B,,, given by (6.7), is thus determined; the mixed derivative B,, is also indepen- 

B , , = - ( a - - ) A , A A , + ( B , - B , ) / 2 ( a - p )  (6.12) 

and the condition of integrability 8, ( Bee)  = d,  ( B a p ) ,  gives two PDE that must be satisfied 
by 1 and m: 

(see (5.41) for the definition of A ) .  

dently known: 

3 - ( H  +3iK)  
4 4(a -m2 

2 ( a - P )  4 4 ( a - p ) *  

l p = - m f i -  

- (m-1) N 3 --- m, = -ml  + 
(6.13) 
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where r a n d  $l are the quantities that correspond to 1 and m under the symmetry that 
exchanges a and P ;  they are given in terms of c8 = B, * A,, by a linear system 
symmetrical to (6.9) and they satisfy two PDE symmetrical to (6.13): 

(i-$l) M 3 
2 ( a - P )  4 4 ( a - P ) ”  

--- $la = -l$l + 
We observe that 1 and i satisfy the simple relation: 

fa - 1, = 3iK/2. 

(6.14) 

(6.15) 

Equations (6.13) and (6.14), where 1, m are given in terms of the four scalars IT, 
K ,  B8 and C, by (6.9). and $l are given by a symmetrical equation, form a complete 
system and constitute a scalar formulation of the Einstein-Maxwell system we started 
from. 

6.3. Separability into a pair of fundamental representations 

The new scalar functions &, C8 that we have introduced may serve to determine the 
a derivatives of Ui and the P derivatives of v, which are not given by (6.3) and (6.4); 
then U;, K will play the role of pseudopotentials. As in § 5.5, the equations giving U ] ,  
VI separate from those involving the remaining unknowns; we find 

VI, = ii( V: - M )  + ( iV, - rGUl). 

X , / X  = ~ , / 2 i - f l  

x, /x  = ~ , / 2 i - - i i  

The system (6.16) and (6.1 7 )  can be linearised through the transformation: 

(6.16) 

(6.17) 

(6.18) 

which does define a new potential X ,  owing to (6.5) and (6.15). 
The system (6.16) and (6.17) may then be viewed as defining the second derivatives 

X, , ,  X,, ,  X,,  of X in the general form (2.3); the coefficients assume the form, 
generalising (5.49): 

(6.19) 
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Another potential X *  may also be defined through the equations complex conjugate 

Both potentials satisfy pairs of third-order ODE, as shown in 0 2.2, and thus provide 
to (6.18). 

a pair of fundamental representations of the group (HI). 

6.4. The Backlund transformation 

The Backlund transformation is identified with the reciprocal transformation of the 
group (G) that exchanges t, cp coordinates; the analysis goes as in 0 5.6. 

Two generators, (GI )  and ( G3), leave all U, and V, invariant, whereas the remaining 
(G,) has transformation formulae: 

i ( a - P ) U l  1 

f f 
- i ( a - p ) V ,  -- 1 

f f 

-- SU, = 

6V1 = 

(6.20) 

SU, = i ( a  - p )  U,/2f 

SV,=-i(a -p)V2/2f: 

The requirement that rI - 2 In f be invariant under linear coordinate transformations 
entails 

SrI = - 2 4 .  (6.21) 

By exponentiation of (GJ, the finite transformation that exchanges the roles of t 
and cp may be constructed. In terms of the complex number 

a eie w + i ( a  -p)/2f (6.22) 

its action on the physical variables is 

a'= l / a  e t =  (T- e )  
f = u2f o1 = -o/u' 

r 1 1 = r I + 4 1 n u  
ut I - - e2i@ U ,  -e"/laf 

v; = e-2iS V, - e-"/af 

U ;  = eieU, 

vi =e-'", 

and consequently 

(6.23) 

(6.24) 

It is interesting to remark that, in the particular case where P is identically real, 
X can be chosen real too, and consequently the pseudopotential B ,  is either zero or 
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a constant. With BI = -2w null, the angular potential t9 takes the simple value t9 = 7712 
and the modulus (+ is (+ = ( a  - P)/2f (equation (6.22)); then the BT (6.23) reduces to 
f’= (a - P),/4f: Applying the transformation (6.1), fEaoc./f, we obtain in the (vacuum) 
Ernst case: 

f ’ a ( . - P ) l f  
which is the celebrated duality transformation (S) introduced in [22]. Thus the BT 

described here constitutes, in this sense, an electrovac generalisation of the duality 
transformation. 

More accurately, the duality (S) itself may not be generalisable to the electromag- 
netic case, as pointed out by Kramer and Neugebauer [24], but its image by the 
transformation (6.1) does admit such a generalisation, which is our Backlund transfor- 
mation. 

6.5. An (X, X*)-symmetrical formulation 

According to the analysis of the preceding section, XI = X is an arbitrary component 
of a 313 vector X which satisfies a system of vector equations of the form (2.10), with 
coefficients expressed by (6.19). This system however is not manifestly symmetrical 
in X ,  X*; we show here how this symmetry can be recovered. 

From the properties (5.12) of the Ernst potentials, it follows that the two remaining 
components X,, X, of X may be defined as in (5.60); we also introduce a dual vector 
U whose components U1 are the contravariant components of X * ,  as defined in (5.70), 
and obtain 

U . x = s = [ ( a - - p ) 8 ] - 1 ’ 3  (6.25) 

( X , X , , X , ) = S z =  1/[4(a-p)’”]. (6.26) 
The 813 vector A is still given by the formulae (5.61), except for an extra normalisation 
factor S: 

A I = - X , X T / S =  -2U3X1/S (6.27) 
etc. Using the identity (5 .71) ,  a pair of first-order vector equations for U and X can 
be derived, in the manner of 0 5.7: 

4S-’R( U, + b$ U )  = P*X A X ,  - N X  A X,  
(6.28) 

4S-’R( U ,  + C $ b ’ )  = M x  Ax, - P x  A x, 
U . X = S  

where b$ = 1*/3, CO* = i*/3. 
The above formulation (6.28) involves three scalar functions only: II, bo and co. 

From II, the coefficients N, M and H may be derived through their definitions (6.2); 
from bo and co, K may be derived as (see (6.15)) 

K =2i(bop-co,). (6.29) 
Hence P = ( H  + i K )  and P*;  and S and S (equation (6.1 1 )  and (6.25)). The Einstein- 
Maxwell system is then entirely specified by imposing three additional constraints on 
coefficients. The first two are that bo, co coincide with the corresponding coefficients 
of X,,, X,, in their expansion (2.3); the third may be chosen to be the relation 

(6.30) 
between coefficients in (2.3). 

D = BC/3 - aoal  - H / 6  
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Using the general integrability conditions (2.4) and ( 2 . 5 ) ,  we then recover the 

The Backlund transformation studied in § 6.4 involves the components A I ,  B1 of 

A: = -S-'x,uJ (6.31) 

expressions (6.19) for the scalar coefficients of the Einstein-Maxwell system. 

A and B, which in the present formulation become the tensors 

and B:; they can be grouped together into a single complex tensor C:: 

C: = ( a - @)A: + iB{ (6.32) 

which is determined by quadrature of 

C l , = - - S - ' ( a - p ) ~ j ( ~ ~ , - a ~ X ~ )  

Cip = -S- ' (a  -p)xi( U$ - a $  U J ) .  
(6.33) 

Thus the BT formulae (6.22) (where w = -B,/2, f =  l / A l )  and (6.23) reduce to the 
inversion of the potential C:: 

c;J= l/C{ (6.34) 

(for some particular choice of the indices i , j ) .  

6.6. The spectral parameter 

It is of course essential to have a spectral parameter in the Backlund transformation 
and in the definition of the pseudopotentials. As is well known (see, e.g., [24]), this 
parameter arises as a result of conformal invariance and of a particular symmetry of 
the scalar equations. 

As in the vacuum case, conformal invariance may be restored by replacing factors 
( a  - p )  in Kinnersley's formulation (5.2) by an arbitrary solution of the two- 
dimensional Laplace equation: 

rap = 0. (6.35) 

The dependence in all the equations given in 0 6 can be established without calculation 
by merely inserting factors r,, r p  wherever needed in order to preserve conformal 
invariance. Thus the correct generalisation of definitions (6.2) of N ,  M,  H, S is ( y = In r) 
N = - y e n ,  M = - y p n p  H =nap S ( M N  - PP*). (6.36) 

It is convenient to also introduce the following reduced quantities, which are conformal 
invariants: 

A A S s  ̂= ( Afi - @F*) = ~ 

(Yay@ I* A = rip/ yp p =  --P/YmYp N = n ? / y ,  

(6.37) 

and the quantity 
A st-= Y,YpS = 8/YaYp (6.38) 

will be useful too. After some reduction, it turns out that the Einstein-Maxwell scalar 
equations can be conveniently formulated in terms of two complex conjugate func- 
tionals F, F* of the two basic unknowns lI and K (and of r): 
F = P2d,,(ln P )  +iKB2+ @ ( P +  H) - 
F*= @*2d,p(ln P*)-iK@*'+?*(P*+ H ) - ( n , ~ ~ + n p ~ ~ ) / 2 + S ' / 4 ( 8 * -  1). 

+ n,P,)/2+ 6' /4(P - 1) 
(6.39) 
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Two other quantities, G and 6 are related algebraically (but not linearly) to the above 
functionals: 

(6.40) 

The two scalar equations governing the two unknowns (n, K )  are then, in conformally 
invariant form 

(6.41) 

In the vacuum case (considered in S4), G and 6 vanish and the Ernst equations 
reduce to the comparatively simple form: 

F = O  F* = 0 (vacuum). (6.42) 

The essential symmetry property underlying the presence of a spectral parameter 
is that the scalar system of equations (6.39)-(6.41) involves the harmonic function r 
through the product T = yayP only and this product remains the same for all r of the 
general form (see (4.33)) 

(6.43) 

so that a given solution n ( a ,  p ) ,  K ( a ,  p )  is compatible with any T(a ,  p )  of the above 
family (6.43). The constant k, which does enter the equations defining the vector 
pseudopotentials, is the spectral parameter. 

Let us mention finally that (mu1ti)solitons may be constructed by repeated applica- 
tion of the BT in the way illustrated in the appendix, starting from the 'vacuum solution': 

(6.44) 

(or, more generally, n,,=T2/2). This choice ensures that the solitons obtained will 
converge towards sine-Gordon-Maxwell solitons in the limit defined by (5.1). 

n 0 = 1  - *(a  - P I 2  

7. Conclusion 

The non-linear evolution equations which are completely integrable by IST always have 
a fundamental Lie group of symmetry (G) which, in combination with a discrete 
Backlund transformation, generates the infinite Lie group of symmetry and infinite 
number of conservation laws [l-51; (G) is in practice a rather simple group, such as 
SL(2) or SL(3), or its complexified versions. We have tried to emphasise in the present 
work the importance of the role played by the scalar equations, which control the 
evolution of the scalar invariants of the Lie group (G). The following common features 
(among which several are of course already well known) of many completely integrable 
equations emerge from their consideration. 
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(i) The scalar equations are ( b y  dejinition) invariant under (G) but they are the 
compatibility conditions for the existence of linear pseudopotentials T, which constitute 
a tenborial representation of (G). In all cases considered here, vector pseudopotentials 
have been found, with dimension c 3 .  

(ii) The sca!ar equations are manifestly Lorentz invariant, or invariant under a 
similar transformation group (Galilean, conformal transformations, etc) including a 
continuous parameter, A,  but the equations defining the pseudopotential T a r e  not, so 
that an explicit dependence on h ,  the spectral parameter, can be introduced in the 
definition of T. 

(iii) The scalar equations present a discrete reciprocal symmetry (the BT), which 
consists of the inversion of a particular c o q x , , m t  of T ;  this component may (as in 
the Dodd-Bullough case) or may not (as in the sine-Gordon case) be completely 
arbitrarily chosen, depending on the particular symmetry of the problem. The reciprocal 
nature of the BT is merely formal, due to the fact that different components of T may 
be selected after each application of the BT-in other words, owing to the linear 
superposition principle which holds within the T representation. The BT produces the 
infinite series of multisoliton solutions when applied to the vacuum. 

An interesting feature is that, although the scalar equations may be said to be 
manifestly invariant under (G),  the group (G)  remains in fact a hidden symmetry of 
these equations as long as the equations giving the pseudopotentials remain unnoticed; 
invariance arises from the fact that the latter are linear and uncoupled. The only 
invariance that is manifest in the scalar equations is that associated with the spectral 
parameter. 

We have here restricted the use of the name of BT to those Backlund transformations 
which do alter the value of the scalar invariants, since they are our basic unknowns. 
In that case a transformation such as Kramer and  Neugebauer’s [24] transformation 
I ,  should not be called here BT (but this is of course only a matter of our present 
convention and  vocabulary). 

It does not appear customary to choose scalars as the unknowns, as we have done 
here; one of the main advantages of the present formulation lies in its unifying power 
( 9  2 )  and increased clarityt, with respect to other formulations where the basic 
unknowns are not taken to be scalars. In the latter case, Backlund transformations 
frequently have varied and  complicated aspects, in contrast with our basic formula: 

T ’ =  1 / T  (7 .1)  
which proved to apply to all cases studied here. 

It is worth noting that, as first shown in [ 6 ] ,  the above formula (7 .1)  does provide 
a BT for the Dodd-Bullough equation, which had been thought not to possess a 
Backlund transformation. It is straightforward to show that the Korteweg-de Vries 
Backlund transformation is of the type (7 .1)  too. 

The sine-Gordon-Maxwell system analysed in 9 5, and its multisoliton solutions, 
are straightforward generalisations of the sine-Gordon equation and  solitons; both are 
two-dimensional hyperbolic non-linear wave equations. This should help the under- 
standing of what precisely are the (mu1ti)solitons of the axisymmetric Einstein-Maxwell 
equations, of which sine-Gordon-Maxwell constitutes the limit far away from the 
symmetry axis. 

i. The tensorial nature of the pseudopotential  is obscured in the usual formulations where the basic unknowns 
are  nor chosen to be scalars. As a result, the BT formulae tend to be much more complicated than ou r  
simple result, (7 .1) .  
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For the Einstein-Maxwell system, we have shown the separability of the standard 
eight-dimensional representation of the group (H') into a pair of three-dimensional 
fundamental representations (X and X * ) ,  which have been explicitly constructed in 
§§ 6.3 and 6.5 (see also §§ 5.5 and 5.7), a result which could not be obtained in [8] 
and is, as far as I know, a new result. 

We also comment (§  6.4) on the electrovac generalisation of the duality transforma- 
tion ( S ) ,  introduced by Kramer and Neugebauer [22]. 

Appendix. The sine-Gordon-Maxwell interacting soliton pair 

The purpose of this appendix is to show that the proposed BT (§ 5.6) does produce 
multisolitons when applied to the vacuum solution: P = P* = 1 ,  L = 0. We will only 
consider the first two iterations, i.e. we construct the interacting soliton pair. 

A l .  The sine-Gordon-Maxwell soliton 

In order to apply the BT we first have to determine the potentials associated with the 
vacuum. As observed in § 5.6 (see the paragraph following (5.63)), the potential X 
coincides with the sine-Gordon potential As, whenever P is real. Thus an arbitrary 
component, X say, is determined by equations (3.10) and (3.22), where f = 1 / X .  Note 
that the only non-vanishing equation (3.10) is ( 3 . 1 0 ~ )  and that H = cos cp = 1 .  This 
system has two independent solutions only: exp[+(Aa - @ / A ) ] ;  we take advantage of 
the Lorentz invariance to choose here, without loss of generality, A = 1, and rewrite 

x , =  l / f S G = ( a + a O ) / v G  

X Z  = ( $ / f  )SG = I / &  (A1 1 
x3 ( f  '+ $ 2 ) / f s c  = l / &  a = e x p [ 2 ( a  -@)I.  

Furthermore we set ao= 1 in what follows, as this amounts to a mere shift in phase 
or translation. 

With the above potential X I ,  application of the BT, with an arbitrary spectral 
parameter A, produces the new solution: 

e 'L/2 = ( a + l ) 2 + i k a  
( a  + 1 ) 2  - i k a  

((+' - 6 a  + 1 ) +. i ka 
( a  + 1 )2 + ika  

= 

[(a' - 6 a +  1 )  +ika] [ (a+  1)2+ika]  
[ (a+ ~ ) ~ - i k a ] ~  

P =  

where k is an integration constant. When k is zero the sine-Gordon soliton is recovered; 
the above soliton may thus be viewed as its complexified version. 

The potential X associated with the soliton (A2) is, in the real (sine-Gordon) case, 

XI =exp[(Aa - @ / A ) ] ( a + x i )  xO" ( A  + 1 ) / ( A  -1) 

X,=exp[-(Aa -p/A)](a+ l / x i ) / ( a + l )  ('43) 
x 3 = ( X , X , - 1 ) 1 ' 2 = ( x , - l / x , ) ~ / ( a + 1 ) .  
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In the general case where k is non-zero, X is given by the general formulation (2.3) 
with coefficients given by (5.7); a pair of third-order linear ODE for X can be derived, 
which are of Fuchsian type in the independent variable u; their general solution turns 
out to be calculable in closed form and is even polynomial when the singularity 
exponent has been factored out. The general solution can thus be found in a systematic 
way [27], through a consideration of the Riemann diagram for the singularity exponents. 
The three independent solutions of the a ODE (assuming p constant) are thus found as 

u A / 2 [  (u + xi)  + xox( u + 1 )] ika  x, = where x=- 
6 XI = 

( a + l ) ( x 2 - 1 ) ’ / 2  (u+ l ) (x * - l ) l ’ 2  ( w +  

and X ,  is obtained from X 2  by changing A to -A (and hence xo to l /xo) .  The three 
solutions that satisfy both the a and p ODE are obtained by merely replacing U”/’ by 
exp[(Aa - p/A)]; the solution XI remains unchanged and is a function of ( a  - p )  only. 

When x = 0 (i.e. k = 0) the sine-Gordon potentials (A3) are recovered. 

A2. The two-soliton formula 

Recalling that x as defined above is pure imaginary, a possible choice for the potentials 
X ,  X *  is 

X = exp(Aa - p/A)[(u+ xi)  + xox(a+ l ) ] / ( u +  l ) ( x 2  - 1)”’ 

X ”  = exp(Aa - p/A)[(a + xi)  - xox(u + l ) ] / ( a  + l ) (x2  - 1)1/2. 
(A51 

In view of the complexity of the formulae, which already include a free parameter k 
(hidden in the variable x), we restrict ourselves in what follows to the case A = 3 (i.e. 
xo = 2), which may be considered typical. 

The BT formula (5.68), with L as in (A2), determines the pseudopotential B1 by 
quadrature; against the variable a, the integral becomes 

[ (a3 + 3a2 - 8) - 2x2(u+ 1)(u2 - 2)] 
xu2 du. I ( a + 1 ) 3 ( ~ 2 - 1 ) 2  

Bl = -12i exp(-2p/A) 

The solution satisfying both equations (5.68) is found to be 

x(u2-4)  
(u+1)2(X2-1)  

B ,  =6i exp 2(Aa - @ / A )  + il 

where I is another integration constant. However, it can be absorbed in the new variable: 

exp 2(Aa - @ / A )  
il ( A  = 3 )  T =  

which plays the role of phase factor of the second soliton created by the BT. Thus the 
constant 1 merely represents a phase shift of the soliton. Finally the factor ezis which 
is given by (5.54) and determines the transformation formulae (5.56) is 

(‘49) 
e2is = (s) ( 7[(u+4)2+4X(u+ 1)2] + ( U +  1)2(x + 1) 

X + 1 T[(C+4)2 -4X(U+ + ( U +  1)’(X - 1) 
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The formulae (5 .57)  then give the interacting two-soliton solution: 

253 1 

e’L’/’- 2iO i L / 2 =  (a+1)2(x+1)+.[((++4)2+4x(a+1)2] - e  e ((a + 1 )2( 1 - x)  - .[(a + 4)’ - 4x(a  + 1 )’I 
[ ( (+’ - 6~ + 1 )  + X(  a + 1 )’I + T [  ( a2 - 24a + 16) + 4x( + 1)2] Q’= 

(a+ l)’(x+ l ) + ~ [ ( a + 4 ) ~ + 4 x ( a +  l)’] 

We observe that, as 7 + 0, the original complex soliton (A2) is recovered and, as 7 + CO, 
the same soliton obtains but for a phase shift of amplitude In 4. When a+ (0, CO) 

however, a ‘unit modulus’ sine-Gordon soliton of the type P = e i L  is found, so that 
the solution (A10) does not represent the most general complex soliton pairt. This is 
due to the lack of generality of our choice (A5) for the pseudopotentials X ,  X * ,  namely 
because we have the same phase factor in both. If that restriction is relaxed, that is 
to say, if we choose the most general linear combination of potentials (A4) compatible 
with the bilinear constraint (5.52), then the most general soliton pair can be derived. 
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t It is interesting to note that, when x = 0 (i.e. k = O ) ,  our formula (A10) represents the collision of two 
sine-Gordon solitons with different masses; the mass ratio is J 4 = 2  (see B 5.6, (5.65) and (5.66)). 


